In-series sample methodology for permeability characterization demonstrated on carbon nanotube-grafted alumina textiles

In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first validated on a reference woven textile. Permea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2021-11, Vol.150, p.106631, Article 106631
Hauptverfasser: Staal, Jeroen, Caglar, Baris, Hank, Travis, Wardle, Brian L., Gorbatikh, Larissa, Lomov, Stepan V., Michaud, Véronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first validated on a reference woven textile. Permeability values matched those obtained by a direct method within a margin of ±15%. Permeabilities of radial-aligned (short CNT, SCNT) and so-called ‘Mohawk’ (long CNT, LCNT) morphologies of the CNT-grafted samples were then measured and compared to the non-grafted alumina, showing a decrease attributed to a change in local textile structure as assessed in previous studies. Unsaturated permeability decreased by 77% after SCNT- and 88% after LCNT-grafting, while saturated permeability further decreased by 90% and 93%, respectively. The high ratio of unsaturated to saturated permeability (in the range of 1.14 – 2.89) implies that capillary wicking contributes largely to the impregnation of CNT-grafted fabrics.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2021.106631