Utilization of the textile reinforcements of fiber reinforced plastics as sensor for condition monitoring
In addition to increased safety by detecting possible overload, continuous component monitoring by sensor integration makes the use of fiber reinforced plastics more cost-effective. Since the components are continuously monitored, one can switch from time-based to condition-based maintenance. Howeve...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2019-11, Vol.126, p.105603, Article 105603 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In addition to increased safety by detecting possible overload, continuous component monitoring by sensor integration makes the use of fiber reinforced plastics more cost-effective. Since the components are continuously monitored, one can switch from time-based to condition-based maintenance. However, the integration of conventional sensor components causes weak points, as foreign objects are inserted into the reinforcing structure. In this paper, we examine the use of the textile reinforcement as a sensor in itself. We describe how bending sensors can be formed by slightly modifying in the composite’s reinforcement structure. We investigated two different sensor principles. (1) The integration of textile plate capacitors into the structure; (2) The construction of textile piezo elements as part of the reinforcing structure. The bending test results reveal that textile plate capacitors show a load-dependent signal output. The samples with textile piezo elements show a significant increase in signal strength. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2019.105603 |