A unified hardening/softening elastoplastic model for rocks undergoing brittle-ductile transition with strength-mapping and fractional plastic flow rule
A novel unified hardening/softening model is presented, addressing challenges in the constitutive modelling of rocks’ strain-hardening and strain-softening behaviours with brittle-ductile transition. The model highlights the impact of confining pressure on failure mode transition when capturing vari...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2024-09, Vol.173, p.106501, Article 106501 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel unified hardening/softening model is presented, addressing challenges in the constitutive modelling of rocks’ strain-hardening and strain-softening behaviours with brittle-ductile transition. The model highlights the impact of confining pressure on failure mode transition when capturing variations in initial yield, peak, and residual strength. The yield criterion and hardening/softening law are developed by a strength-mapping method, where the peak strength is considered the upper bound. The strength-mapping method relies on a mapping index formulated by plastic shear strains. The mapping index is then incorporated into the fractional plastic flow rule, leading to the proposed constitutive model with 9 easy-to-calibrate parameters. The model predictions have been validated by 4 series of rock samples on triaxial tests, where the brittle-ductile transitions have been well captured. The results indicate that it is reliable to capture the rocks’ complicated mechanical responses, particularly the brittle-ductile transition, with our proposed strength-mapping method and fractional plastic flow rule. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2024.106501 |