Enhancing fracture network characterization: A data-driven, outcrop-based analysis
We utilize a pixel-based fracture detection algorithm to digitize 80 published outcrop maps of different scales at different locations. The key fracture properties, including fracture lengths, orientations, intensities, topological structures, clusters, and flow, are analyzed. Our findings provide s...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2022-12, Vol.152, p.104997, Article 104997 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We utilize a pixel-based fracture detection algorithm to digitize 80 published outcrop maps of different scales at different locations. The key fracture properties, including fracture lengths, orientations, intensities, topological structures, clusters, and flow, are analyzed. Our findings provide significant justifications for statistical distributions used in SDFN modelings. We find that fracture lengths follow multiple (instead of single) power-law distributions with varying exponents. Large fractures tend to have large exponents, possibly because of a small coalescence probability. Most small-scale natural fracture networks have scattered orientations, corresponding to a small κ value (κ |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2022.104997 |