Development of a deep learning-based group contribution framework for targeted design of ionic liquids

•A data-driven modeling framework for the design of targeted ILs.•Incorporating group contribution method in DL model for IL properties prediction•Developing DNN-GC and ANN-GC for ILs' viscosity and CO2 solubility prediction.•Correlating IL viscosity and CO2 solubility using merged DNN-GC and A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2024-07, Vol.186, p.108715, Article 108715
Hauptverfasser: Mohammed, Sadah, Eljack, Fadwa, Kazi, Monzure-Khoda, Atilhan, Mert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A data-driven modeling framework for the design of targeted ILs.•Incorporating group contribution method in DL model for IL properties prediction•Developing DNN-GC and ANN-GC for ILs' viscosity and CO2 solubility prediction.•Correlating IL viscosity and CO2 solubility using merged DNN-GC and ANN-GC models.•Utilizing correlation to identify optimal IL structure for maximal CO2 absorption. In this article, we present a novel deep learning-based group contribution framework for the targeted design of ionic liquids (ILs). This computational framework can expedite and improve the process of finding desirable molecular structures of IL via accurate property predictions in a data-driven manner. Our proposed framework consists of two essential steps: establishing a correlation between IL viscosity and CO2 solubility by merging two deep learning models (DNN-GC and ANN-GC) and utilizing this correlation to identify the optimal IL structure with maximal CO2 absorption capacity. Our model achieves high accuracy with R2 values of 95%, 94.2%, and 96.4% for DNN-GC, ANN-GC, and DNN-ANN-GC, respectively. Correlation results align with the experimental data, affirming the applicability of our framework. Finally, the algorithm is employed in a CO2 capture case study to generate and select the best-performing novel ILs, which exhibit behavior consistent with established ILs in the literature.
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2024.108715