Reliable calibration and validation of phenomenological and hybrid models of high-cell-density fed-batch cultures subject to metabolic overflow
Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 g...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2024-07, Vol.186, p.108706, Article 108706 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies.
•High-cell density fed-batch cultures were performed under different regimes.•Phenomenological models were calibrated and evaluated in different conditions.•Best performing model was expanded with a neural network model.•Hybrid model displayed superior accuracy for fitting training data and predicting test data. |
---|---|
ISSN: | 0098-1354 1873-4375 |
DOI: | 10.1016/j.compchemeng.2024.108706 |