Global optimization of large-scale MIQCQPs via cluster decomposition: Application to short-term planning of an integrated refinery-petrochemical complex
Integrated refinery-petrochemical facilities are complex systems that require advanced decision-support tools for optimal short-term planning of their operations. The problem can be formulated as a mixed-integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions select...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2020-09, Vol.140, p.106883, Article 106883 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrated refinery-petrochemical facilities are complex systems that require advanced decision-support tools for optimal short-term planning of their operations. The problem can be formulated as a mixed-integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions select operating modes for the process units, while the entire process network is represented by input-output relationships based on bilinear expressions describing yields and stream properties, pooling equations, fuels blending indices and cost indicators. We develop a novel decomposition-based algorithm for deterministic global optimization that divides the network into small clusters according to their functionality. Inside each cluster, we derive a mixed-integer linear programming (MILP) relaxation based on piecewise McCormick envelopes, dynamically partitioning the variables that belong to the cluster and reducing their domains through optimality-based bound tightening. Results for an industrial case study in Colombia show profit improvements above 10% and significantly reduced optimality gaps compared with the state-of-the-art global optimization solvers BARON and ANTIGONE. |
---|---|
ISSN: | 0098-1354 1873-4375 |
DOI: | 10.1016/j.compchemeng.2020.106883 |