Efficient three-dimensional reconstruction and skeleton extraction for intelligent pruning of fruit trees
•Propose a fast 3D reconstruction method for fruit trees.•Investigate a rapid trunk segmentation and skeleton extraction method.•Support for the development of user-oriented equipment for fruit tree pruning. The three-dimensional reconstruction of fruit trees plays a crucial role in assessing their...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2024-12, Vol.227, p.109554, Article 109554 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Propose a fast 3D reconstruction method for fruit trees.•Investigate a rapid trunk segmentation and skeleton extraction method.•Support for the development of user-oriented equipment for fruit tree pruning.
The three-dimensional reconstruction of fruit trees plays a crucial role in assessing their growth status, analyzing agronomic traits, and categorizing their organs. This is vital for implementing intelligent orchard management. This study aims to develop a cost-effective and efficient method for the three-dimensional reconstruction and skeleton extraction of fruit trees. The proposed method leverages the 3D geometric structure captured by Time-of-Flight (TOF) sensors and addresses common issues such as occlusion and perspective ambiguity. Firstly, the TOF sensor and its supporting components are used to build an acquisition platform to collect the full range point cloud of fruit trees in the key growth period. The noise information is filtered through the point cloud preprocessing operation to obtain the complete target point cloud and extract its structural invariant features. The IWOA-RANSAC-NDT algorithm is introduced for 3D model registration. Secondly, the Delaunay triangulation algorithm and Dijkstra shortest path algorithm are used to calculate the Minimum Spanning Tree. Branch segmentation is expedited using the Kd-tree data structure. The Levenberg Marquardt algorithm and the cylindrical fitting method are used to obtain the full fruit tree skeleton model. Finally, taking walnut tree as the experimental object, a high-precision fruit tree point cloud model is constructed, and the actual verification is carried out based on the measured data. Findings indicate that the proposed methodology can accurately construct both 3D point cloud and skeleton models of fruit trees with accuracy deviations from the measured data remaining within 7 %. The proposed method offers valuable data and technical support for the future development of highly autonomous, practical, and user-oriented fruit tree pruning systems. |
---|---|
ISSN: | 0168-1699 |
DOI: | 10.1016/j.compag.2024.109554 |