Barriers to computer vision applications in pig production facilities

•Proposed interdisciplinary terms and concepts in precision management of animals.•Sources of uncertainty in animal behavior labeling for computer vision applications.•Directions of advanced computer vision algorithms in pig production facilities.•Image dataset construction workflows for computer vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2022-09, Vol.200, p.107227, Article 107227
Hauptverfasser: Li, Jiangong, Green-Miller, Angela R., Hu, Xiaodan, Lucic, Ana, Mahesh Mohan, M.R., Dilger, Ryan N., Condotta, Isabella C.F.S., Aldridge, Brian, Hart, John M., Ahuja, Narendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Proposed interdisciplinary terms and concepts in precision management of animals.•Sources of uncertainty in animal behavior labeling for computer vision applications.•Directions of advanced computer vision algorithms in pig production facilities.•Image dataset construction workflows for computer vision algorithm development. Surveillance and analysis of behavior can be used to detect and characterize health disruption and welfare status in animals. The accurate identification of changes in behavior is a time-consuming task for caretakers in large, commercial pig production systems and requires strong observational skills and a working knowledge of animal husbandry and livestock systems operations. In recent years, many studies have explored the use of various technologies and sensors to assist animal caretakers in monitoring animal activity and behavior. Of these technologies, computer vision offers the most consistent promise as an effective aid in animal care, and yet, a systematic review of the state of application of this technology indicates that there are many significant barriers to its widespread adoption and successful utilization in commercial production system settings. One of the most important of these barriers is the recognition of the sources of errors from objective behavior labeling that are not measurable by current algorithm performance evaluations. Additionally, there is a significant disconnect between the remarkable advances in computer vision research interests and the integration of advances and practical needs being instituted by scientific experts working in commercial animal production partnerships. This lack of synergy between experts in the computer vision and animal health and production sectors means that existing and emerging datasets tend to have a very particular focus that cannot be easily pivoted or extended for use in other contexts, resulting in a generality versus particularity conundrum. This goal of this paper is to help catalogue and consider the major obstacles and impediments to the effective use of computer vision associated technologies in the swine industry by offering a systematic analysis of computer vision applications specific to commercial pig management by reviewing and summarizing the following: (i) the purpose and associated challenges of computer vision applications in pig behavior analysis; (ii) the use of computer vision algorithms and datasets for pig husbandry and management tasks; (iii) the proc
ISSN:0168-1699
1872-7107
DOI:10.1016/j.compag.2022.107227