PPTA: A location privacy-preserving and flexible task assignment service for spatial crowdsourcing
With the rapid growth of sensor-rich mobile devices, spatial crowdsourcing (SC) has emerged as a new crowdsourcing paradigm harnessing the crowd to perform location-dependent tasks. To appropriately select workers that are near the tasks, SC systems need to perform location-based task assignment, wh...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2023-04, Vol.224, p.109600, Article 109600 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rapid growth of sensor-rich mobile devices, spatial crowdsourcing (SC) has emerged as a new crowdsourcing paradigm harnessing the crowd to perform location-dependent tasks. To appropriately select workers that are near the tasks, SC systems need to perform location-based task assignment, which requires collecting worker locations and task locations. Such practice, however, may easily compromise the location privacy of workers. In light of this, in this paper, we design, implement, and evaluate PPTA, a new system framework for location privacy-preserving task assignment in SC with strong security guarantees. PPTA takes advantage of only lightweight cryptography (such as additive secret sharing, function secret sharing, and secure shuffle), and provides a suite of tailored secure components required by practical location-based task assignment processes. Specifically, aiming for practical usability, PPTA is designed to flexibly support two realistic task assignment settings: (i) the online setting where tasks arrive and get processed at the SC platform one by one, and (ii) the batch-based setting where tasks arrive and get processed in a batch. Extensive experiments over a real-world dataset demonstrate that while providing strong security guarantees, PPTA supports task assignment with efficacy comparable to plaintext baselines and with promising performance. |
---|---|
ISSN: | 1389-1286 1872-7069 |
DOI: | 10.1016/j.comnet.2023.109600 |