Prediction of the strength of aged Al-Cu alloys with non-hybrid and hybrid {100}Al plates

[Display omitted] The effect of precipitate hybridization on macroscopic strengthening in aluminum alloys is investigated on the example of Al-Cu alloy using multiscale approach combining molecular dynamics (MD), continuum modeling and discrete dislocation dynamics (DDD). Non-hybrid and hybrid {100}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2022-05, Vol.207, p.111331, Article 111331
Hauptverfasser: Krasnikov, V.S., Gazizov, M.R., Mayer, A.E., Bezborodova, P.A., Pogorelko, V.V., Kaibyshev, R.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The effect of precipitate hybridization on macroscopic strengthening in aluminum alloys is investigated on the example of Al-Cu alloy using multiscale approach combining molecular dynamics (MD), continuum modeling and discrete dislocation dynamics (DDD). Non-hybrid and hybrid {100}Al plates are considered to involve θ′-phase and θ′-phase in the core and Guinier-Preston zone (GP-like) structure along the broad interfaces, respectively. MD simulations evidence a complex dislocation-precipitate interaction mechanism involving bypassing of both hybrid and non-hybrid {100}Al plates by dislocations at early deformation stages and their shearing by the following dislocations. MD results are used to calibrate a continuum model of dislocation-precipitate interactions in 2D DDD. The shear strength of alloy with hybrid precipitates is found to be 20% higher than that for non-hybrid plates at the same Cu content exceeding 2 wt%.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2022.111331