Topological aspects responsible for recrystallization evolution in an IF-steel sheet – Investigation with cellular-automaton simulations
[Display omitted] •Curvature-driven subgrain coarsening simulations mimic recrystallization in IF-steel.•After the simulation, texture components appear, as also found experimentally.•Subgrains near non-intergranular HAGBs do not have a size advantage.•Shear/deformation band nucleation occurs by mat...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2021-10, Vol.198, p.110643, Article 110643 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Curvature-driven subgrain coarsening simulations mimic recrystallization in IF-steel.•After the simulation, texture components appear, as also found experimentally.•Subgrains near non-intergranular HAGBs do not have a size advantage.•Shear/deformation band nucleation occurs by matrix subgrains invading in the bands.•When deformation bands intersect abutting subgrains have kinetic and size advantage.
A cellular automaton algorithm for curvature-driven coarsening is applied to a cold-rolled interstitial-free steel’s microstructure - obtained through electron backscatter diffraction (EBSD). Recrystallization nucleation occurs naturally during the simulation, due to the highly heterogeneous and hence competitive growth among pre-existing (sub) grains. The spatial inhomogeneity of the subgrain growth that takes place derives from the large local variations of subgrain sizes and misorientations that comprise the prior deformed state. The results show that capillary-driven selective growth takes place to the extent that the prior elongated and deformed grains are replaced by equiaxed grains with no interior small-angle boundaries. Additionally, during the simulation certain texture components intensify and others vanish, which indicates that preferential growth occurs in a fashion that relates to the crystal orientations’ topology. The study of the early stages of recrystallization (i.e. nucleation) shows that the pre-existing subgrains that eventually recrystallize, exhibit certain topological characteristics at the prior deformed state. Successful nucleation occurs mostly for pre-existing matrix subgrains abutting shear bands or narrow deformation bands and particularly at regions where the latter intersect. |
---|---|
ISSN: | 0927-0256 1879-0801 |
DOI: | 10.1016/j.commatsci.2021.110643 |