Classification of atomic environments via the Gromov–Wasserstein distance
[Display omitted] •Molecular dynamics simulations need automated methods to classify atomic structure.•Existing methods are restricted to simple compositions and crystal structures.•Proposed method is used to study cubic to monoclinic zirconia phase transition. Interpreting molecular dynamics simula...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2021-02, Vol.188, p.110144, Article 110144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Molecular dynamics simulations need automated methods to classify atomic structure.•Existing methods are restricted to simple compositions and crystal structures.•Proposed method is used to study cubic to monoclinic zirconia phase transition.
Interpreting molecular dynamics simulations usually involves automated classification of local atomic environments to identify regions of interest. Existing approaches are generally limited to a small number of reference structures and only include limited information about the local chemical composition. This work proposes to use a variant of the Gromov–Wasserstein (GW) distance to quantify the difference between a local atomic environment and a set of arbitrary reference environments in a way that is sensitive to atomic displacements, missing atoms, and differences in chemical composition. This involves describing a local atomic environment as a finite metric measure space, which has the additional advantages of not requiring the local environment to be centered on an atom and of not making any assumptions about the material class. Numerical examples illustrate the efficacy and versatility of the algorithm. |
---|---|
ISSN: | 0927-0256 1879-0801 |
DOI: | 10.1016/j.commatsci.2020.110144 |