Maximum-area and maximum-perimeter rectangles in polygons

We study the problem of finding maximum-area and maximum-perimeter rectangles that are inscribed in polygons in the plane. There has been a fair amount of work on this problem when the rectangles have to be axis-aligned or when the polygons are convex. We consider this problem in polygons with n ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geometry : theory and applications 2021-03, Vol.94, p.101710, Article 101710
Hauptverfasser: Choi, Yujin, Lee, Seungjun, Ahn, Hee-Kap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of finding maximum-area and maximum-perimeter rectangles that are inscribed in polygons in the plane. There has been a fair amount of work on this problem when the rectangles have to be axis-aligned or when the polygons are convex. We consider this problem in polygons with n vertices that are not necessarily convex, possibly with holes, and with no restriction on the orientation of the rectangles. We present an algorithm that computes a maximum-area rectangle and a maximum-perimeter rectangle in O(n3log⁡n) time using O(kn2+n) space, where k is the number of reflex vertices of the polygon. Our algorithm can report all maximum-area rectangles in the same time using O(n3) space. We also present a simple algorithm that finds a maximum-area rectangle inscribed in a convex polygon with n vertices in O(n3) time using O(n) space.
ISSN:0925-7721
DOI:10.1016/j.comgeo.2020.101710