Temperature, pressure, velocity, and water vapor mole fraction profiles in a ramjet combustor using dual frequency comb spectroscopy and a high temperature absorption database

Accurate diagnostics of the combustor region of ramjet engines can improve engine design and create benchmarks for computational fluid dynamics models. Previous works demonstrate that dual frequency comb spectroscopy can provide low uncertainty diagnostics of multiple flow parameters in the non-comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2025-03, Vol.273, p.113922, Article 113922
Hauptverfasser: Yun, David, Egbert, Scott C., Malarich, Nathan A., Cole, Ryan K., France, Jacob J., Liu, Jiwen, Rice, Kristin M., Hagenmaier, Mark A., Donbar, Jeffrey M., Hoghooghi, Nazanin, Coburn, Sean C., Rieker, Gregory B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate diagnostics of the combustor region of ramjet engines can improve engine design and create benchmarks for computational fluid dynamics models. Previous works demonstrate that dual frequency comb spectroscopy can provide low uncertainty diagnostics of multiple flow parameters in the non-combusting regions of ramjets. However, the high temperatures present in the combustor present a challenge for broadband spectroscopic absorption models that are used to interpret measurements in these regions. Here, we utilize a new water vapor absorption database created for high temperature water-air mixtures to fit spectra measured in a ground-test ramjet engine with a broadband near-infrared dual comb absorption spectrometer. We extract 2D profiles of pressure, temperature, water mole fraction, and velocity using this new database. We demonstrate that the new database provides the lowest fit residuals compared to other water vapor absorption databases. We compare computational fluid dynamics simulations of the combustor with the measured data to demonstrate that the simulations overpredict heat release and water vapor production.
ISSN:0010-2180
DOI:10.1016/j.combustflame.2024.113922