The Planar Mixing Layer Flame (PMLF): a canonical configuration for studying non-premixed combustion chemistry and soot inception
The study of fuel chemistry and soot inception in non-premixed combustion can be advanced by characterizing flame configurations in which the advection and diffusion transport can be finely controlled, with the ability to decouple pyrolysis from oxidation. Also, the ideal flames to be investigated s...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2024-08, Vol.266, p.113537, Article 113537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of fuel chemistry and soot inception in non-premixed combustion can be advanced by characterizing flame configurations in which the advection and diffusion transport can be finely controlled, with the ability to decouple pyrolysis from oxidation. Also, the ideal flames to be investigated should be perturbed minimally by probes and thick enough for sampling techniques to yield spatially resolved measurements of their structure. The Planar Mixing Layer Flame (PMLF) configuration introduced herein is established between a fuel and an oxidizer slot jet adjacent to each other and shielded from the ambient air by annularly co-flowing inert nitrogen. The PMLF flow is kept laminar and steady by an impinging flat plate equipped with a rectangular exhaust slit opening which anchors the position of the hot combustion products via buoyancy. The PMLF is accessible to sampling and its flow stability is preserved when using any tested probe. The experiments are complemented with 2D- Computational Fluid Dynamics (CFD) modeling with detailed chemical kinetics. The results demonstrate that the PMLF has a self-similar boundary layer structure whose horizontal cross-sections are equivalent to properly selected and equally thick 1D- Counterflow Flames (CFs). The equivalence allows for excellent predictions of the PMLF thermochemical structure characterized experimentally but at a small fraction of the 2D-CFD computational cost. The 1D-CF equivalence affects even aromatics less than twofold despite their kinetics being known to be very sensitive to the temperature field. Importantly, the PMLF thickness is several millimeters and grows at increasing HABs so that the equivalent 1D-CFs have strain rates as small as 7.0 /s which cannot be studied in CF experiments. As a result, the PMLF emerges as a promising canonical non-premixed flame configuration for studying flame chemistry and soot inception on time scales of tens of milliseconds typical of many combustion applications. |
---|---|
ISSN: | 0010-2180 |
DOI: | 10.1016/j.combustflame.2024.113537 |