An S-scheme TiO2/g-C3N4 nanocomposite effectively degrades phenanthrene under visible light
It is a challenge to effectively degrade phenanthrene (PHE) pollutants, which are widely present in aquatic environments, in order to reduce harm to humans and ecosystems. In this study, an S-scheme TiO2/g-C3N4 photocatalytic system is constructed using 0D TiO2 nanospheres and 2D g-C3N4 nanosheets f...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2025-01, Vol.705, p.135554, Article 135554 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a challenge to effectively degrade phenanthrene (PHE) pollutants, which are widely present in aquatic environments, in order to reduce harm to humans and ecosystems. In this study, an S-scheme TiO2/g-C3N4 photocatalytic system is constructed using 0D TiO2 nanospheres and 2D g-C3N4 nanosheets for the removal of PHE from water under sunlight irradiation. The effects of irradiation time, quality ratio of TiO2 to g-C3N4, and cycle time on the performance of the TiO2/CN photocatalyst are investigated. The experimental results show that the ratio of TiO2 to g-C3N4 significantly affects the photocatalytic activity of the photocatalyst. Under the optimal ratio of TiO2 to g-C3N4 (50 % TiO2/CN), the apparent reaction rate constant for phenanthrene reached 0.00796 min−1, which is 11.5 times higher than that of pure TiO2 (0.00069 min−1). The tests of optical performance and photoelectrochemical properties further confirmed that the construction of the TiO2/g-C3N4 S-type photocatalyst successfully enhanced the spatial separation efficiency of photogenerated carriers and ensured a continuous supply of energy during the redox reaction process. Converting highly toxic phenanthrene into a non-toxic green degradation product provides an practical strategy for the safe treatment of PHE in aqueous environments through the use of visible-light-driven heterojunction photocatalysts. Additionally, the data collected on phenanthrene degradation in this study will provide valuable references for developing degradation methods for other PAHs, such as naphthalene, anthracene, and pyrene.
[Display omitted]
•0D TiO2 and 2D g-C3N4 were combined into TiO2/CN composite by a simple two-step calcination process.•The 50% TiO2/CN S-scheme heterojunction showed excellent photocatalytic degradation performance for PHE.•Following four photocatalytic cycling experiments, 50 % TiO2/CN composite demonstrated exceptional structural stability.•The enhanced photocatalytic performance of 50 % TiO2/CN is attributed to the formation of S-scheme heterostructures. |
---|---|
ISSN: | 0927-7757 |
DOI: | 10.1016/j.colsurfa.2024.135554 |