Facile synthesis of NiFe2O4 nanoparticle with carbon nanotube composite electrodes for high-performance asymmetric supercapacitor

The supercapacitor (SCs) is being developed as a cost-effective and efficient energy storage device. Any synergistic impact on binary metal oxide with a CNT composite has been regarded as the desired technique to increase energy storage in recent studies. Herein, we prepared spinel NiFe2O4 enclosed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2022-09, Vol.648, p.129188, Article 129188
Hauptverfasser: Sivakumar, Mani, Muthukutty, Balamurugan, Panomsuwan, Gasidit, Veeramani, Veddiappan, Jiang, Zhongqing, Maiyalagan, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The supercapacitor (SCs) is being developed as a cost-effective and efficient energy storage device. Any synergistic impact on binary metal oxide with a CNT composite has been regarded as the desired technique to increase energy storage in recent studies. Herein, we prepared spinel NiFe2O4 enclosed carbon nanotube (CNT) nanocomposites using chemical approach. The physiochemical characteristics of the prepared NiFe2O4/CNT nanocomposite and NiFe2O4 nanoparticle were studied using a variable of analytical techniques. The spinel NiFe2O4/CNT nanocomposite and NiFe2O4 nanoparticle modified electrode were then examined in a 2 M KOH electrolyte using a three-electrode setup. In particular, the specific capacitance of the spinel NiFe2O4/CNT nanocomposite modified single electrode was 670 F g−1 (CV) and 343 F g−1 (GCD) with retention of 89.16% after 5000 cycles, respectively. Furthermore, the specific capacitance of the spinel NiFe2O4/CNT nanocomposite as a cathode and activated carbon as an anode of a two-electrode device was 118.36 F g−1 (CV) and 85.93 F g−1 (GCD), respectively, with an energy density of 23.39 W h kg−1 vs. power density of 466.66 W kg−1. Then the CNT improves the energy storage activity of NiFe2O4 nanocomposite exhibit through exchange stabilization of energy storage performance. [Display omitted] •The spinel NiFe2O4/CNT nanocomposite were synthesized a simple chemical synthesis method.•The excellent specific capacitance of NiFe2O4/CNT nanocomposite exhibit 670 F g−1 (CV) and 343 F g−1 (GCD).•NiFe2O4/CNT nanocomposite show the retention of 89.16% from 5000 cycle.•NiFe2O4/CNT//AC device exhibit 118.36 F g−1 (CV) and 85.93 F g−1 (GCD).•NiFe2O4/CNT//AC exhibit the energy density of 23.39 W h kg−1 vs. power density of 466.66 W kg−1.
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2022.129188