Injectable hydrogels based on silk fibroin peptide grafted hydroxypropyl chitosan and oxidized microcrystalline cellulose for scarless wound healing

Scars are consequences of the wound healing process, and eliminating scar formation remains a significant challenge. Here, an injectable HMSC hydrogel was developed based on silk fibroin peptide grafted hydroxypropyl chitosan (HPCS-g-SFP) and oxidized microcrystalline cellulose (OMCC) via Schiff bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2022-08, Vol.647, p.129062, Article 129062
Hauptverfasser: Liu, Shuang, Zhao, Yingsong, Wei, Haojie, Nie, Lei, Ding, Peng, Sun, Huixuan, Guo, Yuandong, Chen, Tiantian, Okoro, Oseweuba Valentine, Shavandi, Amin, Fan, Lihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scars are consequences of the wound healing process, and eliminating scar formation remains a significant challenge. Here, an injectable HMSC hydrogel was developed based on silk fibroin peptide grafted hydroxypropyl chitosan (HPCS-g-SFP) and oxidized microcrystalline cellulose (OMCC) via Schiff base bonds. The synthesized HPCS-g-SFP copolymer displayed efficient free radical scavenging ability on hydrogen hydroxyl radicals and 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH). The pore size, gelling time, equilibrium swelling rate and water retention properties of HMSC hydrogel could be regulated by changing ratio of OMCC and HPCS-g-SFP. Then, tetramethylpyrazine (TMP) was encapsulated into HMSC hydrogel to obtain TMP-loaded HMSC hydrogel. The TMP-loaded HMSC hydrogel facilitated 95% cell activity retention after culturing with human skin fibroblasts (HSF) or human hypertrophic scar fibroblast (HSFB) cells for 24 h. Additionally, in vivo animal experiments confirmed that TMP-loaded HMSC hydrogel promoted rapid wound healing while preventing scar formation. The designed injectable TMP-loaded HMSC hydrogel has potentials in promoting scarless wound healing. [Display omitted]
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2022.129062