Influence of ice skeleton on the mechanical behavior of frozen soil under uniaxial compression
The formation of multi-layer horizontal ice lenses in frozen soil significantly alters its internal structure, leading to changes in its mechanical properties. To quantitatively analyze the effects of multi-layer ice lenses on mechanical properties, a series of freezing tests were conducted with fro...
Gespeichert in:
Veröffentlicht in: | Cold regions science and technology 2024-12, Vol.228, p.104327, Article 104327 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation of multi-layer horizontal ice lenses in frozen soil significantly alters its internal structure, leading to changes in its mechanical properties. To quantitatively analyze the effects of multi-layer ice lenses on mechanical properties, a series of freezing tests were conducted with frost-susceptible clay materials at varied freezing ratios. Then, the uniaxial compression tests were conducted to investigate the deformation and strength properties of frozen soil at different freezing ratios and temperatures. The experimental results indicate that the unique ice skeleton structure formed by horizontal ice lenses and inclined ice wedges can significantly improve the strength of the samples, leading to the peak stress and secant modulus E50 increase with the freezing ratio, and the presence of an ice skeleton makes the strength more sensitive to temperature changes. The frozen soil samples exhibit two failure modes (bulging failure and shearing failure), which significantly affect the mechanical parameters of the soil. Based on the test results, a frost heave-induced damage coefficient is introduced into the strain softening model to account for the initial stiffness reduction caused by microcracks generated during the ice skeleton growth. This modified model effectively predicts the stress-strain relationship of soils with varying ice skeleton structures. These findings have practical implications for predicting the properties of frozen soil constructed using artificial freezing methods.
•Systematic investigation of the effects of multi-layer ice lenses on the mechanical properties of frozen soil.•Introduction of a frost heave-induced damage coefficient into a strain-softening model to account for stiffness reduction.•Explanation of bulging failure and shearing failure modes of frozen soil that affect mechanical parameters.•Development of a predictive model for the stress-strain relationship with different ice skeleton structures. |
---|---|
ISSN: | 0165-232X |
DOI: | 10.1016/j.coldregions.2024.104327 |