Pontryagin’s maximum principle for a fractional integro-differential Lagrange problem

In this paper, we study an optimal control problem of Lagrange type in which a control system is described by a nonlinear and singular integro-differential equation of Volterra type with a Caputo derivative. The necessary first-order optimality conditions for a local in (y,u,v) solution (in the form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2024-01, Vol.128, p.107598, Article 107598
1. Verfasser: Kamocki, Rafał
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study an optimal control problem of Lagrange type in which a control system is described by a nonlinear and singular integro-differential equation of Volterra type with a Caputo derivative. The necessary first-order optimality conditions for a local in (y,u,v) solution (in the form of a maximum principle) for the considered problem are derived. Our approach to deriving these conditions is based on an extremum principle for an abstract optimal control problem obtained in Idczak and Walczak (2020), where the main assumption is smoothness in (y,u,v) of a cost and an operator describing constraints. •Proof and applying of the Maximum Principle (PMP) for the FOCP under consideration.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2023.107598