A sharp discrete convolution sum estimate

The paper by C. Lubich in Numer. Math. 2(52):129–145, 1988 is widely cited for its analysis of convolution quadrature rules for integrals with weakly singular kernels. This analysis depends on a key technical lemma (an upper bound on a discrete convolution sum) whose proof uses some advanced tools....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2023-02, Vol.117, p.106923, Article 106923
Hauptverfasser: Stynes, Martin, Wang, Dongling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper by C. Lubich in Numer. Math. 2(52):129–145, 1988 is widely cited for its analysis of convolution quadrature rules for integrals with weakly singular kernels. This analysis depends on a key technical lemma (an upper bound on a discrete convolution sum) whose proof uses some advanced tools. In the present paper it will be shown that this lemma can be quickly proved in an elementary way; moreover, the new proof includes those cases that were excluded from the 1988 paper, and the bounds obtained are shown to be sharp.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2022.106923