Global stabilization of uncertain nonlinear systems via fractional-order PID
This work presents a method that analyzes the global stabilization of fractional-order uncertain nonlinear feedback systems classes with fractional-order proportional–integral–derivative (PID) controllers. Two theorems are provided to necessary conditions for global convergence to any desired setpoi...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2023-01, Vol.116, p.106838, Article 106838 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a method that analyzes the global stabilization of fractional-order uncertain nonlinear feedback systems classes with fractional-order proportional–integral–derivative (PID) controllers. Two theorems are provided to necessary conditions for global convergence to any desired setpoints by designing controllers. The first theorem addresses a class of second-order time-varying systems controlled by fractional-order PID controllers, which extends the main result about PID (Zhao and Guo, 2017) into fractional-order systems via different analysis methods. The second theorem investigates another class of first-order time-invariant systems regulated by fractional-order proportional–integral (PI) controllers. The method is illustrated on two feedback systems with controllers to ensure the global convergence of the feedback system to desired setpoints. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2022.106838 |