Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles
•We review the mathematical models of active targeting of functional nanoparticles to tumor cells.•The effects of the tumor microenvironment and properties of NPs on the transport process were illustrated.•The properties of NPs suitable for transportation are analyzed.•We propose that computational...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2020-02, Vol.184, p.105106, Article 105106 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We review the mathematical models of active targeting of functional nanoparticles to tumor cells.•The effects of the tumor microenvironment and properties of NPs on the transport process were illustrated.•The properties of NPs suitable for transportation are analyzed.•We propose that computational fluid dynamics simulation can better reveal the transport process of NPs.
The process of nanoparticles (NPs) entering blood circulation to actively target tumor cells involves four stages—the transport of NPs in blood vessels, transvascular transport of NPs, transport of NPs in the tumor interstitial matrix and entry of NPs into tumor cells. These four stages are a complex process involving mechanical, physical, biochemical, and biophysical factors, the tumor microenvironment (TME) and properties of NPs play important roles in this process. Because this process involves a large number of factors and is very complex, it is difficult to study with conventional methods.
Using mathematical models for simulation is suitable for addressing this complex situation and can describe the complexity well.
This work focuses on the theoretical simulation of NPs that target tumor cells to illustrate the effects of the abnormal microenvironment of tumors and properties of NPs on the transport process. Mathematical models constructed by different methods are enumerated. Through studying these mathematical models, different methods to overcome nanoparticle (NP) transport obstacles are illustrated.
It is necessary to construct a theoretical model of active targeting nanodrug delivery under the coupling of micro-flow field and specific binding force field, and to simulate and analyze the delivery process at mesoscopic scale using computational fluid dynamics (CFD) method, so as to reveal the law and characteristics of drug delivery and cell uptake in the micro-environment of tumors in vivo. The methods and techniques discussed can serve as the basis for systematic studies of active targeting of functional nanoparticles to tumor cells.
The title is “The process by which nanoparticles actively target tumor cells can be studied using mathematical models.” Abbreviations: NPs, nanoparticles. [Display omitted] |
---|---|
ISSN: | 0169-2607 1872-7565 |
DOI: | 10.1016/j.cmpb.2019.105106 |