Bayesian structural model updating with multimodal variational autoencoder

A novel framework for Bayesian structural model updating is presented in this study. The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE). The method facilitates an approximation of the likelihood when dealing with a small number of observations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2024-09, Vol.429, p.117148, Article 117148
Hauptverfasser: Itoi, Tatsuya, Amishiki, Kazuho, Lee, Sangwon, Yaoyama, Taro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel framework for Bayesian structural model updating is presented in this study. The proposed method utilizes the surrogate unimodal encoders of a multimodal variational autoencoder (VAE). The method facilitates an approximation of the likelihood when dealing with a small number of observations. It is particularly suitable for high-dimensional correlated simultaneous observations applicable to various dynamic analysis models. The proposed approach was benchmarked using a numerical model of a single-story frame building with acceleration and dynamic strain measurements. Additionally, an example involving a Bayesian update of nonlinear model parameters for a three-degree-of-freedom lumped mass model demonstrates computational efficiency when compared to using the original VAE, while maintaining adequate accuracy for practical applications.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2024.117148