Optimizing double-layer rubber composites for eco-friendly laminates: A thermal-mechanical characterization

This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cleaner Materials 2025-03, Vol.15, p.100290, Article 100290
Hauptverfasser: Naemsai, Thanwit, Homkhiew, Chatree, Petdee, Theerawat, Srivabut, Chainarong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and environmental sustainability. The Box-Behnken design methodology was utilized to optimize the formulation of these composites, yielding an optimal solution characterized by a desirability score of 0.714. This optimal formulation consists of a blowing agent content of 12 parts per hundred rubber (phr), wood sawdust content of 80 phr, and a processing temperature of 110 °C. The projected performance characteristics for this optimal composite formulation include a thermal conductivity of 0.023 watts per meter-kelvin (W/mK), a peeling force of 0.728 kN, a puncture force of 97.84 N, and a shearing force of 0.344 kN. Furthermore, an analysis of dimensionless parameters identified a favorable thickness ratio of 0.5 for the double-layer laminate wall panels, which corresponds to a total thickness of 10 mm. This finding is consistent with the principles of green building, facilitating resource efficiency. By adopting a holistic design approach, this study demonstrates a viable strategy for developing high-performance and sustainable double-layer rubber composites tailored for eco-friendly laminates, thus contributing to advancements in green building solutions.
ISSN:2772-3976
2772-3976
DOI:10.1016/j.clema.2024.100290