An optimal economic design of control chart for correlated Poisson variables: The double-dimension LCP chart

•Incorporating the double dimension sampling methodology into the LCP chart for Poisson Variables obtains sampling savings.•The DDLCP chart presents a similar performance as always measuring the cheap and expensive variables.•The recommended change for the design of the optimal DDLCP chart is one th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2023-09, Vol.183, p.109464, Article 109464
Hauptverfasser: García-Bustos, Sandra, Ramírez-Figueroa, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Incorporating the double dimension sampling methodology into the LCP chart for Poisson Variables obtains sampling savings.•The DDLCP chart presents a similar performance as always measuring the cheap and expensive variables.•The recommended change for the design of the optimal DDLCP chart is one that has a large value in covariance. This work proposes a control chart that uses a statistic that is a linear combination of Poisson variables considering the sampling methodology called Double Dimension. This proposal aims to reduce costs when the Poisson variables used in process monitoring are expensive or difficult to measure. Therefore, they are not measured every time the control is performed but only when there are indications that the process is out of control. A user-friendly program was developed to obtain the performance of this chart and estimate the parameters that optimize the out-of-control ARL (average run length) for a shift that the user wants to detect as quickly as possible, restricted to a fixed value of in-control ARL. In addition, numerical results are presented in different scenarios, which allows verifying the performance and sensitivity of the proposed methodology. The results show that implementing the double dimension methodology offers similar performance as always measuring the cheap and expensive variables but with significant sampling savings.
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2023.109464