Simultaneous determination of ten paralytic shellfish toxins and tetrodotoxin in scallop and short-necked clam by ion-pair solid-phase extraction and hydrophilic interaction chromatography with tandem mass spectrometry

•A simple and effective clean-up procedure was developed using ion-pair SPE.•Ten paralytic shellfish toxins and tetrodotoxin were determined by HILIC-MS/MS.•The proposed method yielded minimal matrix effects for the 11 analytes in bivalves. Paralytic shellfish toxins and tetrodotoxin (puffer-fish to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2021-08, Vol.1651, p.462328, Article 462328
1. Verfasser: Ochi, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A simple and effective clean-up procedure was developed using ion-pair SPE.•Ten paralytic shellfish toxins and tetrodotoxin were determined by HILIC-MS/MS.•The proposed method yielded minimal matrix effects for the 11 analytes in bivalves. Paralytic shellfish toxins and tetrodotoxin (puffer-fish toxin), the latter of which was recently found in bivalves from Europe, Japan, and New Zealand, are potent neurotoxins. A simple and effective clean-up procedure was developed for the simultaneous determination of ten paralytic shellfish toxins (gonyautoxins 1–6, decarbamoylgonyautoxins 2 and 3, and N-sulfocarbamoylgonyautoxins 2 and 3) and tetrodotoxin in the scallop, Mizuhopecten (Patinopecten) yessoensis, and the short-necked clam, Ruditapes philippinarum. To reduce matrix effects, 1% aqueous acetic acid extracts of the bivalves were cleaned up by ion-pair solid-phase extraction using a graphite carbon cartridge with tridecafluoroheptanoic acid as the volatile ion-pair reagent, followed by fourfold dilution. The ten paralytic shellfish toxins and tetrodotoxin were then separated on a hydrophilic interaction chromatography column and quantified by tandem mass spectrometry. The limits of detection and the limits of quantification for the ten PSTs ranged from 0.09 to 13.0 µg saxitoxin equivalents/kg and from 0.26 to 39.4 µg saxitoxin equivalents/kg, respectively. The limit of detection and the limit of quantification for tetrodotoxin ranged from 27.4 to 27.9 µg/kg and from 83.1 to 84.4 µg/kg, respectively. The proposed method yielded minimal matrix effects for the 11 analytes, thus allowing their quantification by simple external calibration. The proposed method also gave good mean recoveries of the 11 analytes ranging from 75.7 to 96.2% with relative standard deviations less than 16% at three fortification levels for the ten paralytic shellfish toxins (total concentrations of 277, 554, and 1107 µg saxitoxin equivalents/kg) and tetrodotoxin (100, 200, and 400 µg/kg) in the two bivalve samples. Finally, the proposed method was applied for the determination of the ten paralytic shellfish toxins and tetrodotoxin in scallop and short-necked clam samples.
ISSN:0021-9673
DOI:10.1016/j.chroma.2021.462328