Thermodynamic modeling of comprehensive two dimensional gas chromatography isovolatility curves for second dimension retention indices based analyte identification

•A method to thermodynamically model GC × GC isovolatility curves presented.•Isovolatility curves are used for 2D retention indices analyte identification.•Identification accuracy is evaluated using a GC × GC aromatic hydrocarbon separation.•Identification accuracy is compared across retention indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2020-07, Vol.1622, p.461111, Article 461111
Hauptverfasser: Jaramillo, Roman, Dorman, Frank L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A method to thermodynamically model GC × GC isovolatility curves presented.•Isovolatility curves are used for 2D retention indices analyte identification.•Identification accuracy is evaluated using a GC × GC aromatic hydrocarbon separation.•Identification accuracy is compared across retention indices collected at various temperatures. A method to thermodynamically model the alkane isovolatility curves of a comprehensive two dimensional gas chromatography (GC × GC) separation is presented. This method omits all instrument modifications, additional chromatogram collection, or method alterations which typical isovolatility curve generation requires. Provided that the thermodynamic indices of reference alkanes are available, chromatographers only need to specify the GC × GC method parameters of their separation to output the isovolatility curves. The curves can then be used alongside reference retention indices to generate two dimensional retention times for each analyte. Agreement between the modeled and experimental retention times provides a secondary mechanism for compound identification, supporting the results of a mass spectral search. The technique was used to model the retention times of a GC × GC separation of aromatic hydrocarbons, achieving an average first dimension retention time modeling error of 11 s and an average second dimension retention time modeling error of 0.09 s. Retention indices modeled retention times provide a simpler analyte identification procedure compared to conventional two dimensional retention indices matching.
ISSN:0021-9673
1873-3778
DOI:10.1016/j.chroma.2020.461111