The mechanism of easier desorption of Fe atoms on the (100) surface of LiFePO4 and FePO4

[Display omitted] •The desorption of Fe atoms from different surfaces of LiFePO4 and FePO4 is investigated.•The (100) surfaces of LiFePO4 and FePO4 are most favorable for the desorption of Fe atoms.•The application of strain promotes the desorption of Fe on the surface of LiFePO4 (100). Different su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical physics 2023-06, Vol.570, p.111891, Article 111891
Hauptverfasser: Zhong, Kaifu, Cai, Xinghong, Wang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •The desorption of Fe atoms from different surfaces of LiFePO4 and FePO4 is investigated.•The (100) surfaces of LiFePO4 and FePO4 are most favorable for the desorption of Fe atoms.•The application of strain promotes the desorption of Fe on the surface of LiFePO4 (100). Different surface models are built to explain the desorption properties of Fe atoms in LiFePO4 and FePO4 structures based on density functional theory (DFT) computations. Analyses of the band structures describe the pristine LiFePO4 and FePO4 structures with semiconducting (0.67 eV) and metallic properties, respectively. The electronic properties of the different surfaces mainly arise from the contributions of O and Fe atoms. Calculations of desorption energies and electronic properties reveal that the (100) surfaces of LiFePO4 and FePO4 are most favourable for desorption of Fe atoms, while the (010) surface is less susceptible. In addition, the investigations of Fe atom desorption energy at different strains indicate that the applications of strain increase the tendency of Fe’s desorption on LiFePO4 (100) surface. This study presents a theoretical foundation for understanding the correlation between different surfaces and desorption of Fe atoms for the future applications of lithium ion battery.
ISSN:0301-0104
DOI:10.1016/j.chemphys.2023.111891