Perfluoroalkyl and polyfluoroalkyl substances in cord serum of newborns and their potential factors
The demonstrated developmental and reproductive toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), coupled with the increasing production and use of emerging per- and polyfluoroalkyl substances (PFASs) has resulted in progressively higher human exposure levels. This has...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2023-02, Vol.313, p.137525, Article 137525 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The demonstrated developmental and reproductive toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), coupled with the increasing production and use of emerging per- and polyfluoroalkyl substances (PFASs) has resulted in progressively higher human exposure levels. This has raised concerns about PFAS exposure levels in the fetus, which is highly susceptible to the potential effects of hazardous environmental chemicals. However, in utero exposure to PFASs and health implications have not been fully characterized in China. To fill this gap, we analyzed 19 PFASs in umbilical cord serum samples (n = 66). Information about the mothers and newborns was obtained through questionnaires. Associations between maternal characteristics and neonatal birth weight and PFAS concentrations were analyzed using nonparametric tests. As results, PFOA was detected in all serum samples. The highest median concentration of PFOS in umbilical serum was 1.092 ng·mL-1, followed by perfluoropentanoic acid (median: 0.633 ng·mL-1). Trifluroacetic acid and perfluoropropanoic acid were detected in cord serum for the first time, and their median concentrations were 0.229 and 0.266 ng·mL-1, respectively. Neonatal birth weight was negatively correlated with long-chain PFOS (r = −0.319, P |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.137525 |