Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends

Arsenic (As) is a naturally occurring trace element that may pose a threat to human health and the ecosystem, while effective remediation and sustainable reuse of As-containing soil is a challenge. This study investigated the geoenvironmental characteristics of a geogenic As-rich soil, and green bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-05, Vol.271, p.129868, Article 129868
Hauptverfasser: Li, Jiang-shan, Chen, Liang, Zhan, Baojian, Wang, Lei, Poon, Chi Sun, Tsang, Daniel C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic (As) is a naturally occurring trace element that may pose a threat to human health and the ecosystem, while effective remediation and sustainable reuse of As-containing soil is a challenge. This study investigated the geoenvironmental characteristics of a geogenic As-rich soil, and green binders (ground granulated blast slag (GGBS) and cement blends) were employed for the stabilization/solidification (S/S) of the soil under field-relevant conditions. Results indicate that the use of 10% binder could effectively immobilize As and chemical stabilization/physical encapsulation jointly determined the leaching characteristics of the S/S soils. The geogenic As could be effectively immobilized at the pH range of 5.5–6.5. The increasing use of GGBS enhanced the strength of the 28-d cured S/S soils because of long-term pozzolanic reaction, but also slightly improved the As leachability. Besides, the moisture content of the contaminated soils should be suitably adjusted to allow for desirable compaction of S/S soils, which resulted in high compressive strength and low of As leachability. Results show that soil moisture content of 20% was the most appropriate, which resulted in the highest strength and relatively lower As leaching. In summary, this study presents a sustainable S/S binder for recycling As-contaminated soil by using a combination of cement and GGBS. [Display omitted] •More than 80% of geogenic As in the soil existed as the stable phases.•S/S process blocked human exposure pathway and allowed reuse of As-containing soil.•Soil moisture content of 20% showed the highest strength and the lowest As leaching.•GGBS in the binder system enhanced the 28-d strength of S/S soil.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.129868