Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR

Novel iron activated biochars (FA-BCs) were prepared via simultaneous pyrolysis and activation of FeCl3-pretreated bermudagrass (BG) for removing microcystin-LR (MC-LR) in aqueous solution. Compared to the raw BC (without activation), the surface area and adsorption capacity of FA-BC at iron impregn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-06, Vol.273, p.129649, Article 129649
Hauptverfasser: Zeng, Shengquan, Kan, Eunsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel iron activated biochars (FA-BCs) were prepared via simultaneous pyrolysis and activation of FeCl3-pretreated bermudagrass (BG) for removing microcystin-LR (MC-LR) in aqueous solution. Compared to the raw BC (without activation), the surface area and adsorption capacity of FA-BC at iron impregnation ratio of 2 (2 g FeCl3/g BG) were enhanced from 86 m2/g and 0.76 mg/g to 835 m2/g and 9.00 mg/g. Moreover, FA-BC possessed various iron oxides at its surface which provided the catalytic capacity for regeneration of MC-LR spent FA-BC and magnetic separation after the MC-LR adsorption. Possible mechanisms for the MC-LR adsorption onto FA-BC would include electrostatic attraction, π+-π, hydrogen bond, and hydrophobic interactions. The detailed adsorption studies indicated mainly chemisorption and intra-particle diffusion limitation would participate in the adsorption process. The thermal regeneration at 300 °C kept high regeneration efficiency (99–100%) for the MC-LR spent FA-BC during four cycles of adsorption-regeneration. In addition, the high regeneration efficiency (close to 100%) was also achieved by persulfate oxidation-driven regeneration. FA-BC also exhibited high adsorption capacity for the MC-LR from the real lake water to meet the MC-LR concentration below 1 μg/L as a safe guideline suggested by WHO. •FeCl3 activated biochar (FA-BC) was prepared and used for MC-LR adsorption.•FeCl3 activation increased the BC surface area and MC-LR adsorption capacity.•Adsorption mechanisms included π+-π, hydrogen bond, and hydrophobic interactions.•FA-BC was effectively regenerated by thermal oxidation and persulfate oxidation.•FA-BC can effectively adsorb MC-LR in real lake water.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.129649