Preparation of composite sludge carbon-based materials by LDHs conditioning and carbonization and its application in the simultaneous removal of dissolved organic matter and phosphate in sewage
In this work, a novel carbon-based hydrotalcite-like compounds materials (LDO-SBCs) were prepared by coupling layered double hydroxides (LDHs) conditioning and pyrolytic carbonization, and characterized by X-ray diffraction (XRD), Thermogravimetric Analyzer (TGA), X-ray photoelectron spectroscopy (X...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2021-05, Vol.270, p.129485, Article 129485 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a novel carbon-based hydrotalcite-like compounds materials (LDO-SBCs) were prepared by coupling layered double hydroxides (LDHs) conditioning and pyrolytic carbonization, and characterized by X-ray diffraction (XRD), Thermogravimetric Analyzer (TGA), X-ray photoelectron spectroscopy (XPS) and Brunner-Emmet-Teller (BET) measurements. The synthesized LDO-SBCs composites were used in wastewater treatment for simultaneous removal of phosphate and dissolved organic matter (DOM). The adsorption of DOM and phosphate were well conformed to pseudo-second-order mode. Adsorption equilibrium was better fitted by Langmuir model for phosphate, while Freundlich model for DOM. Compared with the raw sludge carbon, the removal efficiency of DOM and phosphate by LDO-SBCs were increased by 8% and 13%, respectively. Based on the fluorescence spectrum and parallel factor analysis (PARAFAC), LDO-SBCs performed well in promoting the removal of protein substances (TPN and APN). Pore filling, hydrogen bonding, electrostatic adsorption and surface complexation might be dominant in the adsorption of DOM, while, surface complexation and ion exchange between the LDO layers were mainly responsible for the adsorption of phosphate. The difference of adsorption capacity of LDO-SBCs was related to the superior channel structure of composite materials and the composition of interlayer anions of LDO.
[Display omitted]
•Carbon-based hydrotalcite-like compounds materials were synthesized.•LDO-SBCs showed good adsorption properties for DOM and phosphate.•Liquid membrane control of DOM and phosphate was dominant on the adsorption.•LDO-SBCs had an excellent performance on removal of protein substances. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.129485 |