Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges

Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-04, Vol.269, p.129325, Article 129325
Hauptverfasser: Nair, Keerthi M., Kumaravel, Vignesh, Pillai, Suresh C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3–9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1–9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed. [Display omitted] •Efficiency of EF relies on the effectiveness of cathode materials.•Various carbon materials as cathodes and their modifications are reviewed.•Cathodic modifications for both homogeneous and heterogenous EF are discussed.•Cathodes for Metal-free EF that eliminates iron-sludge formation are also reviewed.•Various reactor configurations and challenges for scaling up are briefly discussed.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.129325