Acid mine drainage treatment with novel high-capacity bio-based anion exchanger
Aminated peat (termed PG-Peat) produced using polyethylenimine and glycidyltrimethylammonium chloride was used for the removal of sulphate from real acid mine drainage (AMD) in batch and column mode sorption studies. In the batch tests, the highest sulphate removal capacity achieved was 125.7 mg/g....
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2021-02, Vol.264 (Pt 1), p.128443, Article 128443 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aminated peat (termed PG-Peat) produced using polyethylenimine and glycidyltrimethylammonium chloride was used for the removal of sulphate from real acid mine drainage (AMD) in batch and column mode sorption studies. In the batch tests, the highest sulphate removal capacity achieved was 125.7 mg/g. PG-Peat was efficient and rapid in sulphate removal from AMD even at low temperatures (2–5 °C), achieving equilibrium within a contact time of 30 min. The PG-Peat column treating real AMD showed even higher sulphate uptake capacity (154.2 mg SO42−/g) than the batch sorption studies. The regenerative and practical applicability of PG-Peat was also tested in column set-ups using synthetic sulphate solutions (at pH 5.8 and pH 2.0). The sulphate uptake capacity obtained was higher in column mode when the solutions were treated at acidic pH (2.0) compared to pH 5.8. This could be attributed to the presence of cationized amine groups on PG-Peat under acidic pH conditions. Almost complete sulphate desorption was achieved with NaCl in the column that treated synthetic sulphate solution at pH 5.8, while the lowest desorption rates were observed in the column that treated acidic synthetic sulphate solution (pH 2).
[Display omitted]
•Sulphate removal from cold acid mine drainage (AMD) was studied.•Aminated peat (PG-Peat) was used as bio-based anion exchanger.•Temperature variation (2–22 °C) did not affect the sorptive performance of PG-Peat.•Column mode had higher sorption capacity than batch sorption. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.128443 |