Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment

Approximately 20% industrial water pollution comes from textile dyeing process, with Azo dyes being a major problem in this scenario and requiring new forms of efficient treatment. Effluent treatments using the Advanced Oxidation Processes (AOP) are justified by the potential of application in the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-01, Vol.263, p.128291, Article 128291
Hauptverfasser: Alderete, Bárbara Lopes, da Silva, Juliana, Godoi, Rafael, da Silva, Fernanda Rabaioli, Taffarel, Silvio Roberto, da Silva, Lucas Pisoni, Garcia, Ana Leticia Hilario, Júnior, Horst Mitteregger, de Amorim, Hermes Luís Neubauer, Picada, Jaqueline Nascimento
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximately 20% industrial water pollution comes from textile dyeing process, with Azo dyes being a major problem in this scenario and requiring new forms of efficient treatment. Effluent treatments using the Advanced Oxidation Processes (AOP) are justified by the potential of application in the dyed effluent treatments once they can change the Azo dye chemical structure. Thus, this study aimed to evaluate the toxicity and mutagenic capacity of a synthetic effluent containing Amido Black 10B (AB10B) azo dye before treatment with AOP, named Gross Synthetic Effluent (GSE), and after the AOP, named Treated Synthetic Effluent (TSE). Daphnia magna and Allium cepa tests were used to evaluate acute toxicity effects and chromosomal mutagenesis, respectively. The Salmonella/microsome assay was performed to evaluate gene mutations. In silico assays were also performed aiming to identify the mutagenic and carcinogenic potential of the degradation byproducts of AB10B. There was 100% immobility to D. magna after 24 h and 48 h of treatments with TSE, showing EC50 values around 5%, whereas GSE did not show acute toxicity. However, GSE induced chromosomal mutations in A. cepa test. Both GSE and TSE were not able to induce gene mutations in S. typhimurium strains. These effects can be associated with two byproducts generated with the cleavage of the azo bonds of AB10B, 4-nitroaniline and -2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). In conclusion, AOP is an efficient method to reduce the mutagenicity of synthetic effluent containing AB10B and additional methods should be applied aiming to reduce the toxicity. •Amido Black 10B shows potential mutagenicity and carcinogenicity in silico models.•Advanced Oxidation Process decreases the mutagenicity of synthetic effluent.•Byproducts from Amido Black 10B might increase the toxicity of treated effluent.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.128291