Toxicity of mercury: Molecular evidence
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the con...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-04, Vol.245, p.125586, Article 125586 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
[Display omitted]
•Mercury is ubiquitous in the environment and is teratogenic and neurotoxicant.•Mercury induced cell death mainly involving in ROS production.•Mercury exposure induced genes involving in many biochemical processes.•In comparison to HgCl2, methylmercury exposure induces much more genes.•Knowledge gaps remain for the full understanding of the mercurial toxicity |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2019.125586 |