Anthropogenic or non-anthropogenic particulate matter: Which one is more dangerous and how to differentiate between the effects?

The authors have observed that the function linking health outcomes with exposure to particulate-matter (PM) follows a biphasic pattern. It peaks around levels of PM10≤100 μg/m3, then weakens and rises again at PM10 levels in the range of hundreds. This could be due to a different nature of PM, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-02, Vol.240, p.124954, Article 124954
Hauptverfasser: Novack, Lena, Shenkar, Yorye, Shtein, Alexandra, Kloog, Itai, Sarov, Batia, Novack, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors have observed that the function linking health outcomes with exposure to particulate-matter (PM) follows a biphasic pattern. It peaks around levels of PM10≤100 μg/m3, then weakens and rises again at PM10 levels in the range of hundreds. This could be due to a different nature of PM, the first peak reflecting a stronger anthropogenic and the second - weaker non-anthropogenic particles' effect. The current analysis is focused at the biphasic pattern on the association between PM levels with BG and asthma exacerbations. Pollutants were assessed by local monitoring stations and a satellitebased model. Local weekends/holidays were used to define nonanthropogenic levels of pollutants featured by lower Nitrogen Dioxide, the proxy for anthropogeneity. The association of PM10 with health outcomes within 24-48h lag was explored using spline functions of generalized additive models. Analysis of 546,420 BG tests (43,569 subjects) showed an almost linear association of PM10 with asthma with BG during the days with anthropogenic activity and no trend on other days. Analysis of asthmatic exacerbations within 1576 children showed no heterogeneity in association with PM10 by anthropogeneity levels, possibly indicating a mechanical impact on alveolar as the main trigger for exacerbations rather than PM10 chemical composition. [Display omitted] •Biphasic pattern of association between PM10 and health outcomes has been noticed.•The first peak is probably anthropogenic, the second – non-anthropogenic.•The theory was confirmed for blood glucose, but not for asthma.•The manuscript covers a wide PM10 distribution reaching 4000 μg/m3
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2019.124954