Novel investigation on adsorption analysis of safranal interacting with boron nitride and aluminum nitride fullerene-like cages: Drug delivery system
This study illustrates the effective control of COVID-19 infection through the adsorption of safranal (SAF) on B16N16 and Al16N16 fullerene-like cages. The SAF adsorption onto the B16N16 and Al16N16 surfaces in gas, water (H2O), and chloroform (CHCl3) environments were assessed using density functio...
Gespeichert in:
Veröffentlicht in: | Chemometrics and intelligent laboratory systems 2024-11, Vol.254, p.105206, Article 105206 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study illustrates the effective control of COVID-19 infection through the adsorption of safranal (SAF) on B16N16 and Al16N16 fullerene-like cages. The SAF adsorption onto the B16N16 and Al16N16 surfaces in gas, water (H2O), and chloroform (CHCl3) environments were assessed using density functional theory (DFT) and time-dependent (TD) density functional theory methods, analyzing the substrates and their complexes. The Al16N16/SAF complex exhibited the most negative binding energy and structural stability in the water phase compared to the B16N16/SAF complex at the PBE0-D3 level. The thermodynamic parameters indicated that the adsorption of SAF onto the fullerene-like cages is exothermic, particularly for the Al16N16/SAF complex. Additionally, the interaction of SAF with the fullerene-like cages in the water phase is more pronounced than in gas and chloroform environments. The complexes' energy gap (Eg) decreases in all three environments compared to the perfect systems, with a significant reduction of over 21 % in all phases. This substantial decrease in the energy gap suggests that the complexes have increased reactivity and sensitivity to SAF, likely due to a significant change in electronic conductivity. The results of molecular docking indicate that the Al16N16/SAF complex in the water phase exhibited a strong binding affinity compared to the other compounds studied. These findings suggest that the Al16N16/SAF complex holds promise as a potential inhibitor for COVID-19 and as a valuable material for biomedical applications and drug delivery systems.
•To investigate the safranal adsorption on B16N16 and Al16N16 nanoclusters using Molecular docking.•The results reveal that safranal strongly binds to the surface of the nanoclusters, particularly Al16N16.•The interaction of safranal with nanocages is stronger than in gas and chloroform environments.•The Al16N16/Saf complex shows a good candidate for inhibiting COVID-19 and drug delivery systems. |
---|---|
ISSN: | 0169-7439 |
DOI: | 10.1016/j.chemolab.2024.105206 |