Visibility phenomena in hypercubes

We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic themes. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2023-10, Vol.175, p.114024, Article 114024
Hauptverfasser: Athreya, Jayadev S., Cobeli, Cristian, Zaharescu, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic themes. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W=([0,N]∩Z)d are almost equilateral having all sides almost equal to dN/6, and the sine of the typical angle between rays from the visual spectra from the origin of W is, in the limit, equal to 7/4, as d and N/d tend to infinity. We also show that there exists an interesting number theoretic constant Λd,K, which is the limit probability of the chance that a K-polytope with vertices in the lattice W has all vertices visible from each other.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2023.114024