Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model

A Multifractional Process with Random Exponent (MPRE) is used to model the dynamics of log-prices in a financial market. Under this assumption, we show that the Hurst-Hölder exponent of the MPRE follows the fractional Ornstein–Uhlenbeck process which in the Fractional Stochastic Volatility Model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2023-07, Vol.172, p.113550, Article 113550
Hauptverfasser: Angelini, Daniele, Bianchi, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Multifractional Process with Random Exponent (MPRE) is used to model the dynamics of log-prices in a financial market. Under this assumption, we show that the Hurst-Hölder exponent of the MPRE follows the fractional Ornstein–Uhlenbeck process which in the Fractional Stochastic Volatility Model of Comte and Renault (1998) describes the dynamics of the log-volatility. We provide evidence that several biases of the estimation procedures can generate artificial rough volatility in surrogated as well as real financial data. •Modelling log-prices by a MPRE, a Fractional Stochastic Regularity Model is defined.•The Hurst exponent is the same fOU process of the log-volatility in the RFSV model.•We estimate the global Hurst exponent of the fOU process and of its estimated paths.•Using three methods, we find that nonlinear biases can generate spurious roughness.
ISSN:0960-0779
DOI:10.1016/j.chaos.2023.113550