Dimensional transitions in creeping materials due to nonlinearity and microstructural disorder

•A generalized stress-intensity factor is introduced for nonlinear materials;•The dimensional transition bridges brittle (separation) and ductile collapses;•The kind of collapse depends on material nonlinearity and microstructural disorder. The transition from extremely brittle to very ductile behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2020-12, Vol.141, p.110345, Article 110345
Hauptverfasser: Niccolini, Gianni, Rubino, Alessio, Carpinteri, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A generalized stress-intensity factor is introduced for nonlinear materials;•The dimensional transition bridges brittle (separation) and ductile collapses;•The kind of collapse depends on material nonlinearity and microstructural disorder. The transition from extremely brittle to very ductile behaviours of creeping materials is discussed, where analogies with power-law hardening materials are pointed out. Considering Norton's Law as a viscous constitutive law, it is possible to define a generalized stress-intensity factor Kc ―characterizing the intermediate asymptotic behaviour under steady-state creep conditions― with physical dimensions depending upon the Norton stress exponent n. In the two limit cases of creep resistant materials (n≅1) and creep sensitive materials (n ≫ 1), Kc assumes respectively the dimensions of an elastic stress-intensity factor (FL−3/2) and of a stress (FL−2). Such a dimensional transition, with consequent stress-singularity attenuation, is completely analogous to that occurring through the introduction of a fractal stress-intensity factor (Kc)*, when the influence of microstructural disorder is considered.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2020.110345