Generic AI models for mass transfer coefficient prediction in amine-based CO2 absorber, Part I: BPNN model

[Display omitted] •A generic AI model was developed to predict KGav of CO2 absorption into amine solutions in packed columns.•BPNN was employed to build models which demonstrated outstanding prediction performance.•Extra parameters were introduced to represent features related to amine properties an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2022-12, Vol.264, p.118165, Article 118165
Hauptverfasser: Dong, Shoulong, Quan, Hong, Zhao, Dongfang, Li, Hansheng, Geng, Junming, Liu, Helei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •A generic AI model was developed to predict KGav of CO2 absorption into amine solutions in packed columns.•BPNN was employed to build models which demonstrated outstanding prediction performance.•Extra parameters were introduced to represent features related to amine properties and column characteristics. Accurate and reliable prediction of mass transfer coefficient is critical to evaluate the mass transfer performance of amine-based carbon capture process. This work aims to establish a generic mass transfer model applicable to CO2 absorption into amine solutions in absorber columns. A series of back-propagation neural network (BPNN) models were established based on the experimental data of 23 amine-based systems. The BPNN models trained for a specific CO2 absorption process matched well with the experimental data with all the AAREs of below 4%. Meanwhile, models with better applicability were proposed and established by introducing extra parameters related to amine properties or column characteristics to better describe and predict the mass transfer behavior in different amine-based systems. Particularly, the generic mass transfer coefficient model was developed with the consideration of all influencing factors including operating conditions, amine properties, and packing characteristics, to achieve the accurate prediction of mass transfer coefficient of CO2 absorption into amine solutions in packed columns. The developed generic model could serve as a fast and efficient tool for preliminary selection and evaluation of potential amines by presenting the mass transfer performance in CO2 absorber.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2022.118165