Enhancement of the energy dissipation capacity C-S-H gel through self-crosslinking the poly (vinyl alcohol)
Damping cementitious materials have been widely used in engineering structures for vibration control. However, achieving a balance between the mechanical strength and damping capacity of cementitious materials remains a challenge. Herein, we utilized an initiator (APS) to initiate the self-crosslink...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2024-11, Vol.185, p.107648, Article 107648 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Damping cementitious materials have been widely used in engineering structures for vibration control. However, achieving a balance between the mechanical strength and damping capacity of cementitious materials remains a challenge. Herein, we utilized an initiator (APS) to initiate the self-crosslinking reaction of PVA molecules in C3S paste, then successfully introduced the viscoelastic PVA membranes into C-S-H gel to enhance its energy dissipation capacity. Results showed that the self-crosslinking PVA (scPVA) increased the loss modulus (E′′) of C-S-H gel by about 158 %, increased loss tangent (tanδ) by 85 % and increased the compressive strength by 24 %. Nano-microscopic tests and molecular dynamics (MD) simulation confirmed that scPVA was introduced into C-S-H gel via the hydrogen-bonding interaction, and then formed the viscoelastic PVA membranes, which promoted C3S hydration, reduced the pore size of C-S-H gel and increased the mean chain length (MCL) of C-S-H gel. This study proposes a novel approach for designing high-damping cementitious materials.
[Display omitted] |
---|---|
ISSN: | 0008-8846 |
DOI: | 10.1016/j.cemconres.2024.107648 |