Ti3C2Tx-MXene based 2D/3D Ti3C2–TiO2–CuTiO3 heterostructure for enhanced pseudocapacitive performance

•A novel two-step oxidation-controlled strategy synthesizes MXene-derived 2D/3D heterostructures with enhanced pseudocapacitance.•The resulting heterostructure achieves a capacitance of 437.3F/g, significantly outperforming pure MXene (158.7F/g).•The fabricated ASC device shows excellent energy dens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-11, Vol.499, p.156697, Article 156697
Hauptverfasser: Noman, Muhammad, Mahmood Baig, Mirza, Muhammad Saqib, Qazi, Patil, Swapnil R., Patil, Chandrashekhar S., Kim, Jungmin, Ko, Youngbin, Lee, Eunho, Hwang, Jinwoo, Goo Lee, Seung, Bae, Jinho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A novel two-step oxidation-controlled strategy synthesizes MXene-derived 2D/3D heterostructures with enhanced pseudocapacitance.•The resulting heterostructure achieves a capacitance of 437.3F/g, significantly outperforming pure MXene (158.7F/g).•The fabricated ASC device shows excellent energy density (31.1 Wh/kg) and power density (1041.7 W/kg).•It opens a new avenues for utilizing controlled oxidation to enhance pseudocapacitive properties of MXene. Ti3C2Tx MXene family is a promising electrode material for electrochemical energy storage, but it suffers from insufficient pseudocapacitive charge storage because of self-aggregation and oxidation degradation. To resolve the issue, this paper proposes a two-step process for synthesizing oxidation-controlled MXene-derived 2D/3D heterostructures that beneficially utilize oxidation and simultaneously improve conductivity. The first step generates in-situ 3D floral Ti3C2– TiO2 nanoribbons under partial oxidation of MXene. As the second step, further controlled oxidation with Cu ions transforms the 3D floral Ti3C2–TiO2 nanoribbons into 2D/3D Ti3C2–TiO2–CuTiO3 heterostructure. Leveraging the synergistic effects of MXene, TiO2, and CuTiO3, this 2D/3D heterostructure enhances the interlayered spacing, redox-active site concentration and alleviates low conductivity issue associated with TiO2 nanoribbons. At 2 mA/cm2, the proposed 2D/3D Ti3C2–TiO2–CuTiO3 heterostructure achieved a significantly higher capacitance of 599.2 mF/cm2, compared to MXene with a capacitance of 249.16 mF/cm2 and 3D floral Ti3C2–TiO2 nanoribbons with 498.5 mF/cm2. For practical evaluation, an asymmetric supercapacitor (ASC) device (Ti3C2–TiO2–CuTiO3//AC) was fabricated, which exhibited an energy density of 31.1 Wh/kg, power density of 1041.7 W/kg and capacitance retention of 83.7 % after 5000 continuous charging/discharging cycles. It opens new avenues for utilizing controlled oxidation to enhance pseudocapacitive properties.
ISSN:1385-8947
DOI:10.1016/j.cej.2024.156697