External catalyst-free InGaN photoelectrode for highly efficient energy conversion and H2 generation
[Display omitted] •Novel InGaN quantum particles synthesized on high aspect ratio GaN nanowire structure.•External catalyst-free 1.36 eV InGaN nanowire electrode for broadband solar absorption.•11.5 mmol cm−2 hydrogen generation with a photon-to-current efficiency of 13.75 % at −0.8 V versus RHE. Ga...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-09, Vol.472, p.144997, Article 144997 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Novel InGaN quantum particles synthesized on high aspect ratio GaN nanowire structure.•External catalyst-free 1.36 eV InGaN nanowire electrode for broadband solar absorption.•11.5 mmol cm−2 hydrogen generation with a photon-to-current efficiency of 13.75 % at −0.8 V versus RHE.
GaN is a well-known material whose energy band edges can straddle the redox potentials deep in the visible and infrared wavelengths, thereby promising a drastically improved photon-to-current efficiency under applied bias. However, the material is still limited by the half-reactions of water splitting due to its high defect density, low light absorption, small reaction area, and large energy band bending. Here, our study provides a turn-key solution to all these issues. The synergistic effect of InGaN/GaN quantum pyramids on nanowires (QPs-NWs) directly addresses the performance degradation of the photocathodes (PCs). New InGaN QP structures on non-polar GaN nanowire show a unique tunable energy band (Eg: ∼2 eV to ∼1.36 eV) by quantum-sliding interface recombination effect. Without the use of external catalysts, the photoelectrochemical water splitting (PEC-WS) of QPs-NWs PC demonstrated enhanced performance with a current density of 34.36 mA cm−2 and a photon-to-current efficiency of 13.75 % under the −0.8 to 0 V applied biasing condition, which is much higher than in previous reports. The current density and the H2 production were measured to be ∼61.81 mA cm−2 and 11.5 mmol cm−2 for 10 h. The external catalyst-free electrode and the metal organic chemical vapor deposition (MOCVD) process will open a new platform for the commercialization of III-nitride based water splitting hydrogen technology. |
---|---|
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2023.144997 |