Interface engineered Ni3Se2/Ni3S2/NF heterostructure as a highly efficient electrocatalyst for robust oxygen evolution reaction

•Triggered abundant catalytic active sites and modulated the active electron density.•Loose nanoforest structure increased contact with the electrolyte solution.•High active performance for OER (η50 of 251 mV and η100 of 312 mV). Transition metal chalcogenides has been reported to be an efficient ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-07, Vol.468, p.143705, Article 143705
Hauptverfasser: Lin, Man, Gu, Mingzheng, Deng, Xueya, Xie, Qiang, Zhang, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Triggered abundant catalytic active sites and modulated the active electron density.•Loose nanoforest structure increased contact with the electrolyte solution.•High active performance for OER (η50 of 251 mV and η100 of 312 mV). Transition metal chalcogenides has been reported to be an efficient catalyst toward oxygen evolution reaction (OER) catalysts. Developing a reliable heterogeneous structure strategy to modulate the electronic structure of electrocatalyst is a key challenge. Herein, we investigate an efficient and stable Ni3Se2/Ni3S2/NF catalyst with heterogeneous structure toward OER. The catalyst exhibits excellent OER performance with a low overpotential of 251 and 312 mV at 50 and 100 mA cm−2, respectively. Experiment result shows that the interface of Ni3Se2 /Ni3S2/NF heterostructure triggers abundant catalytically active sites, while regulates the electronic structure of Ni central active site resulting in fast charge-transfer capacity and superior electrochemical performance. This work provides an effective interface regulation strategy for developing applications of other advanced heterostructures.
ISSN:1385-8947
DOI:10.1016/j.cej.2023.143705