A hierarchical In2O3@ZIF-67 architecture with upgraded CO2 photoreduction performances

[Display omitted] •Bio-inspired artificial photosynthetic nanoreactor developed for CO2 photoreduction.•Efficient double heterostructure enhances electron-hole separation.•Two antenna systems promote the utilization of visible light energy.•Macroscopic architecture capture CO2 and light, diminishing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-07, Vol.467, p.143329, Article 143329
Hauptverfasser: Wang, Ying-Jie, He, Bing, Ma, Dejun, Li, Rui, Xie, Yabo, Li, Jian-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Bio-inspired artificial photosynthetic nanoreactor developed for CO2 photoreduction.•Efficient double heterostructure enhances electron-hole separation.•Two antenna systems promote the utilization of visible light energy.•Macroscopic architecture capture CO2 and light, diminishing photosensitizer usage.•Tunable hydrophobicity inhibits the side product of H2 and improves CO selectivity. CO2 photoreduction is warmly embraced as a promising strategy to attain carbon neutrality, with natural photosynthesis constituting a valuable source of inspiration for catalyst design. Herein, an In2O3@ZIF-67 artificial photosynthetic nanoreactor was constructed by growing ZIF-67 on the interior and exterior of MIL-68(In)-derived hollow In2O3 prisms via potential nonclassical crystallization pathway(s), forming an efficient double heterostructure with separated reaction centers and prompt electron transfers. With the introduction of [Ru(bpy)3]2+ photosensitizer, the nanoreactor possesses two antennae to harvest visible light. Additionally, the macroscopic architecture permits enhanced light and photosensitizer utilization, while ZIF-67 facilitates the capture of CO2. Collectively, the developed nanoreactor exhibits a remarkable CO production rate of 33420 µmol g−1h−1 with the diminished quantity of the photosensitizer. Moreover, the hydrophobicity of the nanoreactor is found to suppress the side product of H2 and elevate CO selectivity to 94%, further demonstrating the superiority of its exquisite design.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2023.143329