Strengthening ion uptake and mitigating volume change via bimetallic telluride heterojunction for ultrastable K-ion hybrid capacitors

[Display omitted] •Designing bimetallic heterojunction that comprises Mo-Co telluride moiety.•Revealing structural change of electrode by in situ transmission electron microscopy.•Achieving a lifespan of 6000 cycles at 1.0 A g−1 for K-ion hybrid capacitor. Unitary transition-metal tellurides are app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-01, Vol.455, p.140907, Article 140907
Hauptverfasser: Zeng, Zhihan, Zhang, Wenqi, Ma, Hao, Yi, Yuyang, Lian, Xueyu, Yang, Xianzhong, Cai, Ran, Zhao, Wen, Sun, Jingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Designing bimetallic heterojunction that comprises Mo-Co telluride moiety.•Revealing structural change of electrode by in situ transmission electron microscopy.•Achieving a lifespan of 6000 cycles at 1.0 A g−1 for K-ion hybrid capacitor. Unitary transition-metal tellurides are appealing to supersede their oxide and sulfide congeners in the realm of K-ion storage because of advanced electrical conductivity. Nevertheless, the marked volume expansion of tellurides during K+ uptake/release giving rise to rapid capacity decay remains a daunting obstacle. Distinct from the previously reported singular telluride configurations, bimetallic heterojunction comprising Mo-Co telluride moiety and dual-carbon encapsulation is developed in this study to endow durable K-ion storage. Density functional theory calculations unlock the synergistic effects of bimetallic Mo-Co tellurides with respect to augmenting electrical conductivity and favoring K-ion adsorption. In situ transmission electron microscopy analysis clearly reveal the structural evolution of bimetallic Mo-Co telluride during a discharge/charge cycle, showing a mitigated volume expansion rate of 2.37 %. Accordingly, the heterojunction exhibits excellent cycling stability (160 mAh/g for 2000 cycles at 1.0 A/g) and favorable capacity output (322 mAh/g at 0.2 A/g), outperforming unitary MoTe2 or CoTe2 counterparts. Thus-derived K-ion hybrid capacitor full-cell manifests elongated lifespan over 6000 cycles at 1.0 A/g. This telluride heterojunction material might offer a valuable reference to rendering high-performance potassium-based energy storage devices.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2022.140907